SPAN® methodology

Calculating margins for portfolios of futures contracts on WIBOR reference rates and futures contracts on Treasury bonds settled in cash

Table of Contents

1.	Risk parameter	r examples	3
	2. Calculations	s for a portfolio of WIBOR futures contracts	5
	B. Calculations	s for a portfolio of futures contracts on Treasury bonds	1

1. Risk parameter examples

Class	PSR	PSR intraday	VSR	Minimum margin for short position in options
1MW	0.34%			
3MW	0.51%			
6MW	0.53%			
STB	1.60%			
МТВ	3.20%			
LTB	4.30%			

Main parameters

Level definitions

Class	Level	Instruments	
1MW	1	Futures	
	1	Futures, series 1 - 6	
3MW	2	Futures, series 7 - 10	
	3	Futures, series 11 - 13	
	1	Futures, series 1 - 6	
61WIW	2	Futures, series 7 - 10	
STB	1	Futures	
МТВ	1	Futures	
LTB	1	Futures	

Intra-class spread definitions

Class	Priority	Level – leg 1	Number of deltas	Market side 1 (A/B)	Level – leg 2	Number of deltas	Market side 2 (A/B)	Margin
1MW	1	1	1	А	1	1	В	500
3MW	1	2	1	А	2	1	В	250
3MW	2	3	1	А	3	1	В	400
3MW	3	1	1	A	1	1	В	475

кdpw_ <u>СС</u>Р

3MW	4	2	1	А	3	1	В	575
3MW	5	1	1	А	2	1	В	600
3MW	6	1	1	А	3	1	В	775
6MW	1	2	1	А	2	1	В	1050
6MW	2	1	1	А	1	1	В	1050
6MW	3	1	1	А	2	1	В	1500
STB	1	1	1	А	1	1	В	880
МТВ	1	1	1	А	1	1	В	1140
LTB	1	1	1	A	1	1	В	720

Inter-class spread credit

			Number	Market		Number	Market
Priority	crt	Class1	of	side 1	Class2	of	side 2
			deltas	(A/B)		deltas	(A/B)
1	41.0%	3MW	2	А	6MW	1	В
2	27.5%	1MW	1	А	3MW	1	В
3	22.7%	1MW	2	А	6MW	1	В
4	64.4%	МТВ	1	А	LTB	1	В
5	53.1%	STB	1	А	МТВ	1	В
6	42.1%	STB	1	А	LTB	1	В

2. Calculations for a portfolio of WIBOR futures contracts

FUILIOUU I.

Instrument	Number of positions	Settlement price
F1MWZ13	-2	98.00
F1MWF14	2	97.90

1. Calculating a scenario risk margin for a class of futures contracts For futures contracts, a scenario risk margin is calculated as PSR for the class times the absolute value of the position.

drsc(1MW) = 0.34% * |-2 * 98 * 2500 + 2 * 97.9 * 2500| = 1.70

- 2. Calculating an intra-class spread margin
 - 2.1 Calculating the delta for each level in a class

The delta for a level is the sum of the deltas for all instruments in the portfolio. The delta for an instrument is the instrument's reference delta (equal to 1 for futures contracts) times the number of positions times the delta scaling factor. The delta scaling factor reflects differences in the value of contracts. All WIBOR contracts within each class (1MW, 3MW, 6MW) have the same multiplier; hence, the delta scaling factor of all contracts is 1. The delta is equal to the number of positions.

Results for the example portfolio:

Class	Level	Positive delta	Negative delta
1MW	1	2	2

2.2 Calculating a delta in the spread for defined spreads

The delta in the spread is an absolute value (no sign). The delta value is based on the delta of each level and spread definition. A defined spread includes several legs (at least 2) for which the following are defined: levels, direction of the required correlation between levels (opposite market sides or not), number of deltas. Priorities are assigned to defined spreads within a class.

The delta in the spread is determined in the first place for priority 1 spread, next for priority 2 spread, etc.

There is only 1 spread in class 1MW. According to the spread definition in class 1MW, 1 positive delta and 1 negative delta are required to create 1 spread. There

are 2 positive deltas and 2 negative deltas available; consequently, 2 spreads can be created in class 1MW.

2.3 Calculating an intra-class spread margin

$$dswk(1MW) = 2 * 500 = 1000$$

3. Calculating a portfolio margin

$$DZ = drsc(1MW) + dswk(1MW) = 1.7 + 1000 = 1001.7$$

Portfolio 2.

Instrument	Number of positions	Settlement price
F3MWV13	-20	98
F3MWF14	50	97.9
F3MWM14	-10	97.9
F3MWH15	4	97.8

1. Calculating a scenario risk margin for a class of futures contracts

drsc(3MW)

= 0,51% * |-20 * 98 * 2500 + 50 * 97.9 * 2500 - 10 * 97.9 * 2500 + 4 * 97.8 * 2500| = 29926.8

- 2. Calculating an intra-class spread margin
 - 2.1 Calculating the delta for each level in a class

The delta scaling factor for contracts in class 3MW is 1. This gives the following table:

Class	Level	Positive delta	Negative delta
3MW	1	50	20
3MW	2		10
3MW	3	4	

2.2 Calculating a delta in the spread for defined spreads

Check whether spreads of subsequent priorities can be created.

Priority 1.

Priority Leg1 Leg2 Margin

	Level	Number of deltas	Market side	Level	Number of deltas	Market side	
1	2	1	А	2	1	В	250

Both legs of the spread have level 2. There are only 10 negative deltas available for level 2. No spread can be created, there are no deltas with opposite signs for level 2.

Priority 2.

	Leg1			Leg2			
Priority	Level	Number of deltas	Market side	Level	Number of deltas	Market side	Margin
2	3	1	А	3	1	В	400

Both legs of the spread have level 3. There are only 5 positive deltas available for level 3. No spread can be created, there are no deltas with opposite signs for level 3.

Priority 3.

		Leg1			Leg2		
Priority	Level	Number of deltas	Market side	Level	Number of deltas	Market side	Margin
3	1	1	А	1	1	В	475

Both legs of the spread have level 1. There are 50 positive deltas and 20 negative deltas available. 1 positive delta and 1 negative delta are required to create 1 spread; consequently, it is possible to create 20 spreads. After they are created, all negative deltas and 20 out of 50 positive deltas for level 1 have been used; 30 positive deltas remain to be used for other spreads.

Priority 4.

		Leg1			Leg2		
Priority	Level	Number of deltas	Market side	Level	Number of deltas	Market side	Margin
4	2	1	А	3	1	В	575

There are 10 negative deltas for leg 1 and 4 positive deltas for

leg 2 available. 1 positive delta and 1 negative delta are required to create 1 spread; consequently, it is possible to create 4 spreads. After they are created, all positive deltas for level 3 and 4 out of 10 negative deltas for level 2 have been used; 6 negative deltas for level 2 remain to be used for other spreads.

Priority 5.

		Leg1			Leg2		
Priority	Level	Number of deltas	Market side	Level	Number of deltas	Market side	Margin
5	1	1	А	2	1	В	600

There are 30 positive deltas for leg 1 and 6 negative deltas for leg 2 available. 1 positive delta and 1 negative delta are required to create 1 spread; consequently, it is possible to create 6 spreads. After they are created, all negative deltas and 6 out of 30 positive deltas for level 2 have been used; 24 positive deltas remain to be used for other spreads.

Priority 6.

		Leg1			Leg2		
Priority	Level	Number of deltas	Market side	Level	Number of deltas	Market side	Margin
6	1	1	А	3	1	В	775

No spread can be created, there are no deltas for leg 2.

Priority	Level – leg 1	Available number of deltas	Level – leg 2	Available number of deltas	Used deltas
1	2	10	2	0	0
2	3	5	3	0	0
3	1	50	1	20	20
4	2	10	3	4	4
5	1	30	2	6	6
6	1	24	3	0	0

Summary of created spreads

2.3 Calculating an intra-class spread margin

dswk(3MW) = 20 * 475 + 4 * 575 + 6 * 600 = 15400

3. Calculating a portfolio margin

DZ = drsc(3MW) + dswk(3MW) = 29926.8 + 15400 = 45326.8

Portfolio 3.

Instrument	Number of positions	Settlement price
F1MWZ13	-2	98
F1MWF14	2	97.9
F3MWV13	-20	98
F3MWF14	50	97.9
F3MWM14	-10	97.9
F3MWH15	4	97.8
F6MWZ13	-13	97.5

- 1. Calculating a scenario risk margin for a class of futures contracts drsc(1MW) = 1.70 drsc(3MW) = 29926.8drsc(6MW) = 0.53% * |-13 * 97.5 * 5000| = 33588.75
- 2. Calculating an intra-class spread margin for a class dswk(1MW) = 1000dswk(3MW) = 20 * 475 + 4 * 575 + 6 * 600 = 15400There are no spreads in class 6MW.
- 3. Calculating an inter-class spread margin

3.1 Calculating net deltas for a class

DN(1MW) = -2 + 2 = 0 DN(3MW) = -20 + 50 - 10 + 4 = 24DN(6MW) = -13

3.2 Calculating the unit risk of price change of a class

This is calculated only for those classes where the net delta is other than 0 (in the example, no inter-class spreads are created for class 1MW).

For classes of futures contracts only, the unit risk of price change is equal to the scenario risk margin to the absolute value of the net delta.

$$jrzc(3MW) = \frac{29926.8}{24} = 1246.95$$

$$jrzc(6MW) = \frac{33588.75}{13} = 2583.75$$

3.3 Calculating a delta in the inter-class spread for defined spreads Check whether spreads of subsequent priorities can be created. Priority 1.

		Leg1			Leg2		
Priority	Class	Number of deltas	Market side	Level	Number of deltas	Market side	Credit
1	3MW	2	А	6MW	1	В	41%

There are 24 positive deltas for leg 1 and 13 negative deltas for leg 2 available. 2 deltas for leg 1 and 1 delta with the opposite sign for leg 2 are required to create 1 spread; consequently, it is possible to create 12 spreads. After they are created, all deltas for class 3MW and 12 out of 13 negative deltas for class 6MW have been used; 1 negative delta for class 6MW remains to be used for other spreads.

As there are no deltas in the other classes, no more spreads can be created.

3.4 Calculating an inter-class spread credit for a class

The credit for a class is the unit risk of price change times the number of created spreads times the number of deltas in the spread definition times the credit rate in the spread definition.

cspk(3MW) = 1246.95 * 12 * 2 * 41% = 12269.99cspk(6MW) = 2583.75 * 12 * 1 * 41% = 12712.05

4. Calculating a valuation margin of a class

DZW = drsc + dswk - cspk

DZW(1MW) = 1000 + 1.7 = 1001.7 DZW(3MW) = 29926.8 + 15400 - 12269,99 = 33056.81DZW(6MW) = 33588.75 - 12712.05 = 20876.7

5. Calculating a portfolio margin

$$DZ = DZW(1MW) + DZW(3MW) + DZW(6MW) = 54935.21$$

3. Calculations for a portfolio of futures contracts on Treasury bonds

Portfolio 4.

Instrument	Number of positions	Settlement price
FSTBZ13	10	101
FSTBM14	-20	106
FMTBZ13	20	104.94
FMTBH14	-50	98
FMTBM14	10	102
FSTBZ13	-10	100.5
FSTBH14	10	101
FSTBM14	40	102

- 1. Calculating a scenario risk margin for a class of futures contracts drsc(STB) = 1.6% * |10 * 101 * 1000 - 20 * 106 * 1000| = 17760 drsc(MTB) = 3.2% * |20 * 104.94 * 1000 - 50 * 98 * 1000 + 10 * 102 * 1000| = 56998.4 drsc(LTB) = 4.3% * |-10 * 100.05 * 1000 + 10 * 101 * 1000 + 40 * 102 * 1000|= 175848.5
- 2. Calculating an intra-class spread margin for a class
 - 2.1 Calculating the delta for each level in a class

Similar to WIBOR futures contracts, the delta is equal to the number of positions. According to the level definitions, all expiry dates in classes STB, MTB and LTB have the same level.

Class	Level	Positive delta	Negative delta
STB	1	10	-20
МТВ	1	30	-50
LTB	1	50	-10

Results for the example por	ortfolio:
-----------------------------	-----------

2.2 Calculating a delta in the spread for defined spreads

There is only 1 spread definition in each class: STB, MTB and LTB. According to the spread definitions, 1 positive delta and 1 negative delta are required to create 1 spread in each class.

There are 10 positive deltas and 20 negative deltas available

for class STB; consequently, it is possible to create 10 spreads for class STB.

There are 30 positive deltas and 50 negative deltas available for class MTB; consequently, it is possible to create 30 spreads for class MTB.

There are 50 positive deltas and 10 negative deltas available for class LTB; consequently, it is possible to create 10 spreads for class LTB.

- 2.3 Calculating an intra-class spread margin for a class dswk(STB) = 10 * 880 = 8800 dswk(MTB) = 30 * 1140 = 34200dswk(LTB) = 10 * 720 = 7200
- 3. Calculating an inter-class spread margin
 - 3.1 Calculating net deltas for a class DN(STR) = 10 20 = -10

DN(STB) = 10 - 20 = -10 DN(MTB) = 30 - 50 = -20DN(LTB) = 50 - 10 = 40

3.2 Calculating the unit risk of price change of a class

$$jrzc(STB) = \frac{17760}{10} = 1776$$

$$jrzc(MTB) = \frac{56998.4}{20} = 2849.92$$

$$jrzc(LTB) = \frac{175848.5}{40} = 4396.21$$

3.3 Calculating a delta in the inter-class spread for defined spreads Check whether spreads of subsequent priorities can be created.

Priority 4. Leg1 Leg2 Number Number Priority Market Market Credit Class of Level of side side deltas deltas 4 MTB 1 А LTB 1 В 64.4%

There are 20 negative deltas for leg 1 and 40 positive deltas for leg 2 available. 1 delta for leg 1 and 1 delta with the opposite sign for leg 2 are required to create 1 spread; consequently, it is possible to create 20 spreads. After they are created, all deltas for class MTB and 20 out of 40 negative deltas for class LTB have been used; 20 negative deltas for class LTB remain to be used for other spreads.

Priority 5.

Priority	Leg1			Leg2			
	Class	Number of deltas	Market side	Level	Number of deltas	Market side	Credit
5	STB	1	А	MTB	1	В	53.1%

No spread can be created, there are no deltas for leg 2.

Priority 6.

Priority	Leg1			Leg2			
	Class	Number of deltas	Market side	Level	Number of deltas	Market side	Credit
6	STB	1	Α	LTB	1	В	42.1%

There are 10 negative deltas for leg 1 and 20 positive deltas for leg 2 available. 1 delta for leg 1 and 1 delta with the opposite sign for leg 2 are required to create 1 spread; consequently, it is possible to create 10 spreads.

3.4 Calculating an inter-class spread credit for a class

The credit for a class is the unit risk of price change times the number of created spreads times the number of deltas in the spread definition times the credit rate in the spread definition.

cspk(STB) = 1776 * 10 * 1 * 42.1% = 7476.96 cspk(MTB) = 2849.92 * 20 * 1 * 64.4% = 36706.97cspk(LTB) = 4396.21 * 20 * 1 * 64.4% + 4396.21 * 10 * 1 * 42.1% = 75131.22

4. Calculating a valuation margin of a class

DZW = drsc + dswk - cspk

DZW(STB) = 17760 + 8800 - 7476.96 = 19083.04DZW(MTB) = 56998.4 + 34200 - 36706.97 = 54491.43DZW(LTB) = 175848.5 + 7200 - 75131.22 = 107917.28

5. Calculating a portfolio margin

DZ = DZW(STB) + DZW(MTB) + DZW(LTB) = 181491.75