

T 22 537 91 27 F 22 627 31 11 E ccp@kdpw.pl

www.kdpwccp.pl

Resolution No. 24/20 of the Management Board of KDPW_CCP S.A. dated 9 July 2020

amending the Detailed Rules of the OTC Clearing System

Pursuant to § 3 sub-para. 2, 4 and 8 of the Rules of Transaction Clearing (non-organised trading) and § 19 sub-para. 2 of the Statute of KDPW_CCP S.A., the Management Board of KDPW_CCP S.A. hereby resolves as follows:

§ 1

The Detailed Rules of the OTC Clearing System, attached to Resolution No. 21/16 of the KDPW_CCP S.A. Management Board dated 17 August 2016 (as amended), shall be amended as follows:

- 1/ § 33a sub-para. 3 shall be replaced by the following:
- "3. PAA shall be calculated for a period equal to the number of calendar days between day R when the calculation is performed (inclusive) and day R+1 (exclusive) for the clearing of transactions with settlement (TZR) using the POLONIA interest rate for transactions with settlement (TZR) cleared in PLN and the ESTR rate for transactions with settlement (TZR) cleared in EUR.";
- 2/ § 56 sub-para. 3 shall be replaced by the following:
- "3. Interest on a deposited variation margin /VM/ shall be calculated for a period equal to the number of calendar days between day R when the calculation is performed (inclusive) and day R+1 (exclusive) for the clearing of transactions with margin (TZD) using the POLONIA interest rate for transactions with margin (TZD) cleared in PLN and the ESTR rate for transactions with margin (TZD) cleared in EUR.":
- **3/** Appendix 1 to the Detailed Rules of the OTC Clearing System shall be replaced by Appendix 1 hereto;
- **4/** Appendix 6 to the Detailed Rules of the OTC Clearing System shall be replaced by Appendix 2 hereto.

§ 2

1. As of the effective date of this Resolution, all transactions in interest-rate derivatives denominated in EUR, cleared in the OTC clearing system, which are priced before that date using the OIS discount

curve based on the EONIA rate, shall be discounted with the OIS discount curve based on the ESTR rate according to this Resolution.

- 2. For transactions referred to in sub-para. 1, KDPW_CCP shall perform a one-time adjustment of, respectively, variation margins referred to in § 1 point 6a of the Rules of Transaction Clearing (non-organised trading), determined for each transaction with margin (TZD), or the settlement amount referred to in § 1 point 16a, determined for each transaction with settlement (TZR).
- 3. The adjustment referred to in sub-para. 2 shall be equal to the difference between the valuation of a clearing member's EUR transaction portfolio using the OIS discount curve based on the EONIA rate as at the effective date of this Resolution and the valuation of the portfolio using the OIS discount curve based on the ESTR rate as at the effective date of this Resolution.
- 4. The adjustment referred to in sub-para. 2 shall be settled in cash on the business day following the effective date of this Resolution.

§ 3

This Resolution shall come into force on 27 July 2020.

Maciej Trybuchowski Sławomir Panasiuk Dr Piotr Jaworski

President Vice-President Member

of the Management Board of the Management Board of the Management Board

Appendix 1 to Resolution No. 24/20 of the KDPW_CCP S.A. Management Board dated 9 July 2020

Appendix 1 to the Detailed Rules of the OTC Clearing System

This Appendix sets out the characteristics of derivatives accepted for clearing by KDPW_CCP. The payment dates, the reference rate arrangements, the start and end dates of interest periods are defined according to the convention set in the terms of the transaction. Furthermore, the terms of the transaction may specify the amount of additional cash payments at specific dates.

The other terms of the transaction, including the terms of valuation, are set according to the Clearing Rules and the Detailed Rules of the OTC Clearing System.

I. Forward Rate Agreement (FRA)

Currency	PLN	EUR	
Nominal value		Fixed	
Trade date	Any bus	Any business day	
Start date/Settlement		Any day	
date			
End date	No later than novation date + spot + 24M No later than novation date + spot + 36M		
Reference rate	WIBOR: 1M, 3M, or 6M EURIBOR: 1M, 3M, or 6M		

II. Interest Rate Swap (IRS)

Currency	PLN	EUR
Nominal value	Fixed or floating	
Trade date	Any business day	
Start date	Any day	
Maturity	No later than novation date +spot + 20Y No later than novation date + spot + 50Y	
Floating rate margin	Fixed or floating	
Reference rate	WIBOR: 1M, 3M, or 6M EURIBOR: 1M, 3M, or 6M	

III. Overnight Index Swap (OIS)

Currency	PLN	EUR
OIS rate	Fixed	
Nominal value	Fixed	
Trade date	Any business day	
Start date	Any day	
Maturity	No later than	No later than
	novation date + spot + 1Y	novation date + spot + 30Y
Reference rate	POLONIA	EONIA or ESTR

IV. Basis Swap

Currency	PLN EUR		
Nominal value	Fixed or floating		
Trade date	Any busin	Any business day	
Start date	Any day		
Maturity/End date	No later than: novation date +spot +20Y No later than: novation date +spot +50Y		
Reference rate	WIBOR: 1M, 3M, or 6M EURIBOR: 1M, 3M, or 6M		
Floating rate margin	Fixed or floating		

Appendix 6 to Resolution No. 24/20 of the KDPW_CCP S.A. Management Board dated 9 July 2020

Appendix 6 to the Detailed Rules of the OTC Clearing System

MARGIN CALCULATION METHODOLOGY AND DERIVATIVES, REPO AND SELL TRANSACTIONS VALUATION METHODOLOGY

1. Overview

This Appendix presents the valuation formulas for interest rate derivatives and repo transactions implemented in the kdpw_otc system, as well as the calculation algorithms used to determine the yield curve and to calculate historically simulated value at risk.

2. Valuation formulas for different types of financial instruments

2.1 Definitions

The valuation of a transaction is performed in the currency of the contract.

The definitions of symbols used in the valuation formulas are presented below.

$r_{t,Z}$	is the rate for curve Z at date t
$\mathrm{df_t}$	is the discount factor for a discount curve at date t
$\mathrm{df}_{\mathrm{Z},t}$	is the discount factor at date t for curve Z consistent with the instrument tenor
znak	is the counterparty sign, possible values: 1 or -1
N	is the contract nominal amount
r_{FRA}	is the FRA rate
$t(d_1,d_2)$	is the year fraction between date d_1 and $d_2,$ calculated according to the relevant convention
eff	is the instrument effective date or coupon start date
mat	is the instrument maturity date or coupon end date

2.2 FRA valuation

FRAs are agreements where the counterparties determine the interest rate to be used at a future date for a specific amount in the transaction currency for a determined period. The FRA value is determined differently before and after the reference rate is set.

The value is determined as follows:

• before the reference rate is set:

$$PV_{FRA} = znak \ N \left[df_{eff} - \left(1 + r_{FRA} \ t(eff, mat) \right) df_{eff} \ \frac{df_{Z,mat}}{df_{Z,eff}} \right]$$

• after the reference rate is set:

$$PV_{FRA} = znak \frac{(r_{fixing} - r_{FRA})N t (eff,mat)}{1 + r_{fixing} t (eff,mat)} df_{eff}$$

2.3 IRS valuation

Interest Rate Swaps is an agreement to exchange interest rate periodic and are made up of two interest cash flows. One counterparty pays interest calculated at a fixed interest rate (fixed leg) and receives interest calculated at a floating rate (floating leg); the other counterparty does the opposite. The contract value is the difference between the valuation of the received leg and the valuation of the paid leg. The valuation of each IRS leg is presented below.

• Fixed leg valuation:

$$PV_{fixed}(t) = \sum_{j:mat(j)>t}^{M_{fixed}} r_{IRS,j} N_j t(eff(j), mat(j)) df_j$$

where:

 M_{fixed} - is the number of interest periods of the fixed leg - nominal amount of the contract in interest period j

 $r_{IRS,i}$ - contractual IRS rate in interest period j

Floating leg valuation:

$$PV_{float}(t) = \sum_{j:mat(j)>t}^{M_{float}} N_j (r_j + m_j) t (eff(j), mat(j)) df_j$$

$$r_j = \begin{cases} r_{t;refix_j,index} & t_{refix_j} \leq t \\ r_{j,\infty} & t_{refix_j} > t \end{cases}$$

where:

 $r_{j,\alpha}$ - is the rate at date j for curve α , where j = 0 (first coupon cash flow) the rate may be set

 $\begin{array}{c} \text{explicitly without an input rate} \\ r_{t,refix_j,index} & \text{- observed index rate on day } t_{refix_j} \end{array}$

 M_{float} - is the number of interest periods of the floating leg m_i - is the additive margin (spread) in interest period j

2.4 Basis Swap valuation

Basis Swaps are a type of interest rate swaps for which both parties pay interest at a different floating rate. The contract value is the difference between the valuation of the received leg and the valuation of the paid leg. The valuation of each leg is presented below.

KDPW CCP

$$PV_{A}(t) = \sum_{j:mat(j)>t}^{T} N_{j}(r_{j,A} + m_{A,j}) t(eff(j), mat(j)) df_{j}$$

$$PV_{B}(t) = \sum_{j:mat(j)>t}^{T} N_{j}(r_{j,B} + m_{B,j}) t(eff(j), mat(j)) df_{j}$$

where:

$$r_j = \begin{cases} r_{t_{refix_j},index} & t_{refix_j} \leq t \\ r_{j,\infty} & t_{refix_j} > t \end{cases}$$

 $r_{t_{;refix_i},index}$

- the index rate observed on day t_{refix_i}

index

- rate index for a given floating leg

 $r_{j,\infty}$

- is the rate at date j for curve \propto , where j = 0 it is the rate which may be determined

for the first cash flow

 \boldsymbol{T}

- is the number of interest periods

 $m_{A,j}, m_{B,i}$

- is the additive margin (spread) in the interest period

2.5 OIS valuation

OIS are fixed to floating interest rate swaps where the floating leg is indexed to the overnight rate (POLONIA rate in Poland, EONIA or ESTR in EUR currency). OIS swap two cash flows: a fixed leg which is a one-off cash flow of interest set at a fixed rate determined in the contract for a specific nominal amount, and a floating leg which is a one-off cash flow of interest compounded over every day set at an overnight rate for a specific nominal amount. The settlement amount is the absolute value of the difference between the two legs. The valuation of each leg is presented below.

$$PV_{fixed} = \sum_{j:mat(j)>t}^{T} Nr_{OIS} t(eff(j), mat(j)) df_{j}$$

where:

 r_{OIS} - set fixed rate of the contract

$$PV_{float}(t) = NR't (eff, mat)df_{mat}$$

$$R' = int(R * 10^4 + 0.5)/10^4$$

$$R = \left(\prod_{i=1}^{T} (1 + r_i \ t(eff(i), mat(i))) - 1\right) / t \ (eff, mat)$$

where:

T - is the number of interest periods in the term of the contract,

$$r_i = \begin{cases} r_{i,index} + s & i \le \\ r_{i,OIS} + s & i > t \end{cases}$$

 $r_{i,index}$ - observed the index rate at day i

 $r_{i,\mathit{OIS}}$ - OIS curve rate at the start date of interest period i

s - is the additive margin (spread)

R - is the effective interest rate

R' - is the effective interest rate, for PLN instruments rounded off to four decimal places

2.6 Valuation of additional cash flows

If there are additional cash flows under the terms of the transaction, their valuation is determined as follows:

$$NPV_{fee} = \sum_{i=1}^{k} znak F_i df_i$$

where:

k - number of additional cash flows

 F_i - amount of *i*-th cash flow

znak - 1 if the additional cash flow is to be received or -1 if the additional cash flow is to be paid

2.7 Valuation of repo transactions

The contract value before the settlement of the first leg is calculated as follows:

$$PV = znak \ (N_{Bonds} \ MarketPrice (t) df_{spot} - GrossAmount1 \ df_{t1})$$

$$- znak \ (N_{Bonds} \ MarketPrice (t) df_{spot} - GrossAmount2 \ df_{t2})$$

where:

 N_{Bonds} - is the transaction volume

*t*1 - is the settlement date of the first leg

t 2 - is the settlement date of the second leg

GrossAmount 1 - is the settlement amount of the first leg

Gross Amount 2 - is the settlement amount of the second leg

MarketPrice (t) - is the settlement price of bonds on day t (including interest accrued since the last

coupon payment date)

 df_{spot} - discount factor from day t+2 to current date

 df_{t2} - discount factor from day t2 to current date

znak - constant equal to -1 for the repo counterparty and 1 for the reverse repo

counterparty

The contract value after the settlement of the first leg is calculated as follows:

$$PV = -znak(N_{Bonds} MarketPrice(t)df_{spot} - GrossAmount2df_{t2})$$

2.8 Valuation of sell transactions

 $PV = znak(N_{Bonds} MarketPrice(t)df_{spot} - GrossAmountdf_t)$

where:

znak - constant equal to -1 for the seller and 1 for the buyer

GrossAmount - sell transaction settlement amount

 df_t - discount factor from day t to current date

3. Calculating the required initial margin

The required initial margin is equal to the value of HVaR (i.e. VaR calculated using historic scenarios) for a given account while applying the following parameters:

- holding period
- confidence level
- decay rate
- number of historical events (time horizon)
- method used to calculate rates for VaR scenarios

3.1 Overview

KDPW_CCP performs a Value at Risk (HVaR) calculation. The model calculates a potential Profit / Loss (PL) based on historical market movements within the set time horizon. Statistical analysis of the P&L sample space is then used.

Calculation of margins (and other risk measures, if any) is a three-step process:

- generate scenarios from the market history;
- price the portfolio using each of the generated historical scenarios;
- calculate quantile values.

3.2 Scenario generation

The HVaR model generates market scenarios based on historical market movements over a specified date range, from today to a specified date in the past.

Scenarios are generated in the date range:

$$(t - N) do (t)$$

where:

t - is the current business day

N - is the number of the historical observation period

Each scenario *i* is defined as the vector of *n* market inputs that impact the value of the portfolio.

For interest rates, KDPW_CCP calculates δ_i using the additive movement which includes scaling of the portfolio holding period:

$$\delta_i = r_t + \sqrt{l}(r_{i+1} - r_i)$$

and for fx rates it uses the multiplicative movement:

$$\delta_i = \max\left(0, r_t \left(1 + \left(\frac{r_{i+1}}{r_i} - 1\right)\sqrt{l}\right)\right)$$

3.3 Valuation under scenarios

The portfolio is valued as at today's business date for each scenario using the historical market inputs.

This results in the following vector *V* of potential loss:

$$V = \begin{bmatrix} \sum_{c=1}^{Y} (MtM_{1,c} - MtM_{t,c}) ExR_{1,c} \\ \sum_{c=1}^{Y} (MtM_{2,c} - MtM_{t,c}) ExR_{2,c} \\ \dots \\ \sum_{c=1}^{Y} (MtM_{N,c} - MtM_{t,c}) ExR_{N,c} \end{bmatrix}$$

where:

N -is the number of scenarios,

 $MtM_{i,c}$ - is the hypothetical value of the portfolio of transactions in currency c in scenario i in the

range 1 to N,

 MtM_{tc} - is the mark to market of the portfolio of transactions in currency c,

 $ExR_{i,c}$ - is the fx rate under scenario i, used to convert the value of the portfolio in currency c to

PLN.

Given a portfolio of m trades, the potential PV_i is calculated in PLN as:

$$MtM_{i,c} = \sum_{j=1}^{m} f(T_{j,c}, s_{i,c})$$

where:

f - is the function which returns the valuation of transaction T_i in currency c in scenario s_i

 $T_{i,c}$ - is the j-th trade in currency c in the portfolio

s_{ic} - is scenario i for currency c

3.4 Calculating the margin

In its statistical analysis of a sample of potential Profit / Loss values, KDPW_CCP assumes that scenarios used in the portfolio valuation are assigned equal weights (each scenario has equal probability).

When calculating percentiles, vector values are ordered from lowest (largest loss) to highest (largest profit). Given N ranked valued from the sector V, the rank x L for target percentile P is calculated as:

$$x = \frac{P}{100} (N - 1) + 1$$

Then splitting x into its integer k and decimal component d, such that x = k + d, we calculate the percentile value $P(v_p)$ as:

$$v_{P} = \begin{cases} v_{1}, & x = 1 \\ v_{N}, & x = N \\ v_{k} + d(v_{k+1} - v_{k}), & 1 < x < N \end{cases}$$

The value V_p is the required level of initial margin.

4. Definition of projection curves and discount curves

4.1 Projection curves

4.1.1 1M curve

	PLN	EUR
1M	WIBOR	EURIBOR
2M	FRA 1x2	IRS 2m1s
3M	FRA 2x3	IRS 3m1s
4M		IRS 4m1s
5M		IRS 5m1s
6M	IRS 6m1s	IRS 6m1s
7M		IRS 7m1s
8M		IRS 8m1s
9M		IRS 9m1s
10M		IRS 10m1s
11M		IRS 11m1s
1Y	IRS 1y1s	IRS 1y1s
2Y	IRS 2y1s	IRS 2y1s
3Y	IRS 3y1s	IRS 3y1s
4Y	IRS 4y1s	IRS 4y1s
5Y	IRS 5y1s	IRS 5y1s

6Y	IRS 6y1s	IRS 6y1s
7Y	IRS 7y1s	IRS 7y1s
8Y	IRS 8y1s	IRS 8y1s
9Y	IRS 9y1s	IRS 9y1s
10Y	IRS 10y1s	IRS 10y1s
12Y	IRS 12y1s	IRS 12y1s
15Y	IRS 15y1s	IRS 15y1s
20Y	IRS 20y1s	IRS 20y1s
25Y		IRS 25y1s
30Y		IRS 30y1s
40Y		IRS 40y1s
50Y		IRS 50y1s

4.1.2 3M curve

	PLN	EUR
3M	WIBOR	EURIBOR
4M	FRA 1x4	FRA 1x4
5M	FRA 2x5	FRA 2x5
6M	FRA 3x6	FRA 3x6
7M	FRA 4x7	FRA 4x7
8M	FRA 5x8	FRA 5x8
9M	FRA 6x9	FRA 6x9
10M	FRA 7x10	FRA 7x10
11M	FRA 8x11	FRA 8x11
1Y	FRA 9x12	FRA 9x12
15M	FRA 12x15	FRA 12x15
18M	FRA 15x18	
21M	FRA 18x21	
2Y	FRA 21x24, IRS 2y3s	IRS 2y3s
3Y	IRS 3y3s	IRS 3y3s
4Y	IRS 4y3s	IRS 4y3s
5Y	IRS 5y3s	IRS 5y3s

6Y	IRS 6y3s	IRS 6y3s
7Y	IRS 7y3s	IRS 7y3s
8Y	IRS 8y3s	IRS 8y3s
9Y	IRS 9y3s	IRS 9y3s
10Y	IRS 10y3s	IRS 10y3s
12Y	IRS 12y3s	IRS 12y3s
15Y	IRS 15y3s	IRS 15y3s
20Y	IRS 20y3s	IRS 20y3s
25Y		IRS 25y3s
30Y		IRS 30y3s
40Y		IRS 40y3s
50Y		IRS 50y3s

4.1.3. 6M curve

	PLN	EUR
6M	WIBOR	EURIBOR
7M	FRA 1x7	FRA 1x7
8M	FRA 2x8	FRA 2x8
9M	FRA 3x9	FRA 3x9
10M	FRA 4x10	FRA 4x10
11M	FRA 5x11	FRA 5x11
1Y	FRA 6x12	FRA 6x12
15M		FRA 9x15
18M	FRA 12x18	FRA 12x18
2Y	FRA 18x24	IRS 2y6s
3Y	IRS 3y6s	IRS 3y6s
4Y	IRS 4y6s	IRS 4y6s
5Y	IRS 5y6s	IRS 5y6s
6Y	IRS 6y6s	IRS 6y6s
7Y	IRS 7y6s	IRS 7y6s
8Y	IRS 8y6s	IRS 8y6s

9Y	IRS 9y6s	IRS 9y6s
10Y	IRS 10y6s	IRS 10y6s
12Y	IRS 12y6s	IRS 12y6s
15Y	IRS 15y6s	IRS 15y6s
20Y	IRS 20y6s	IRS 20y6s
25Y		IRS 25y6s
30Y		IRS 30y6s
40Y		IRS 40y6s
50Y		IRS 50y6s

4.1.4 OIS curve

	PLN	EUR EONIA	EUR ESTR
O/N	POLONIA (index)	EONIA	ESTR
1W	OIS 1W	OIS 1W	ESTR 1W
2W	OIS 2W	OIS 2W	ESTR 2W
3W	OIS 3W	OIS 3W	ESTR 3W
1M	OIS 1M	OIS 1M	ESTR 1M
2M		OIS 2M	ESTR 2M
3M	OIS 3M	OIS 3M	ESTR 3M
4M		OIS 4M	ESTR 4M
5M		OIS 5M	ESTR 5M
6M	OIS 6M	OIS 6M	ESTR 6M
7M		OIS 7M	ESTR 7M
8M		OIS 8M	ESTR 8M
9M	OIS 9M	OIS 9M	ESTR 9M
10M		OIS 10M	ESTR 10M
11M		OIS 11M	ESTR 11M
1Y	OIS 1Y	OIS 1Y	ESTR 1Y
15M		OIS 15M	ESTR 15M
18M		OIS 18M	ESTR 18M
21M		OIS 21M	ESTR 21M
2Y		OIS 2Y	ESTR 2Y
3Y		OIS 3Y	ESTR 3Y

4Y	OIS 4Y	ESTR 4Y
5Y	OIS 5Y	ESTR 5Y
6Y	OIS 6Y	ESTR 6Y
7Y	OIS 7Y	ESTR 7Y
8Y	OIS 8Y	ESTR 8Y
9Y	OIS 9Y	ESTR 9Y
10Y	OIS 10Y	ESTR 10Y
11Y	OIS 11Y	ESTR 11Y
12Y	OIS 12Y	ESTR 12Y
15Y	OIS 15Y	ESTR 15Y
17Y	OIS 17Y	ESTR 17Y
20Y	OIS 20Y	ESTR 20Y
25Y	OIS 25Y	ESTR 25Y
30Y	OIS 30Y	ESTR 30Y
40Y	OIS 40Y	ESTR 40Y
50Y	OIS 50Y	ESTR 50Y

4.1.5 Discount rate curves

4.1.6 PLN curve

O/N	POLONIA (index)
1W	OIS 1W
2W	OIS 2W
3W	OIS 3W
1M	OIS 1M
3M	OIS 3M
6M	OIS 6M
9M	OIS 9M
1Y	OIS 1Y
2Y	IRS 2y1s
3Y	IRS 3y1s
4Y	IRS 4y3s

5Y	IRS 5y3s
6Y	IRS 6y3s
7Y	IRS 7y3s
8Y	IRS 8y3s
9Y	IRS 9y3s
10Y	IRS 10y3s
12Y	IRS 12y3s
15Y	IRS 15y3s
20Y	IRS 20y3s

4.1.7 EUR curve

The EUR discount curve is the OIS EUR ESTR curve described in point 4.1.4.

5 Sources of market data

Sources of market data for respective types of financial instruments and data include:

- 1. For instruments cleared in PLN:
- 1) WIBOR (index) fixing organised by GPW Benchmark S.A.,
- 2) POLONIA (index) fixing organised by the National Bank of Poland,
- 3) FRA, IRS, OIS (PLN) market data from available news services and data from transactions sent for clearing to KDPW_CCP,
- 2. For instruments cleared in EUR:
- 1) EURIBOR (index) fixing organised by the European Money Market Institute, 1
- 2) EONIA (index) data determined and published by the European Money Market Institute, 1
- 3) ESTR (index) fixing published by the European Central Bank,
- 4) FRA, IRS, OIS (EUR) market data from available news services and data from transactions sent for clearing to KDPW_CCP.

Market data are sourced via the news service ICE Data Derivatives (main news service), Bloomberg or Thomson Reuters on the terms defined below.

¹ According to the agreement between KDPW_CCP S.A. and the European Money Market Institute (EMMI), please note that the transaction clearing service is not in any way sponsored, endorsed, sold, or promoted by EMMI, and EMMI has no obligations or liability in connection with the use of any such service. EURIBOR and EONIA are compiled and calculated on behalf of EMMI. However, EMMI shall not be liable (whether in negligence or otherwise) to any person for any error in EURIBOR and/or EONIA or use of the same, whether or not arising from the negligence of EMMI, and EMMI shall not be under any obligation to advise any person of any error therein.

EMMI MAKES NO WARRANTY, EXPRESS OR IMPLIED, EITHER AS TO THE RESULTS TO BE OBTAINED FROM THE USE OF EURIBOR and/or EONIA, AND/OR THE FIGURE AT WHICH EURIBOR and/or EONIA STANDS AT ANY PARTICULAR TIME ON ANY PARTICULAR DAY OR OTHERWISE. EMMI MAKES NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FOR USE WITH RESPECT TO THE SERVICE AND EXCLUDES ALL LIABILITY FOR ANY LOSS OF BUSINESS OR PROFITS OR FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL LOSS OR DAMAGE ARISING FROM USE OF EURIBOR and/or EONIA.

In determining reference rates for interest rate derivatives referred to in point 1 (3) and point 2 (3), KDPW_CCP uses in the first place data available from the main news service.

If data from the main news service are incomplete on any clearing day, their availability is limited or the adequacy of the data raises reasonable doubt in the opinion of KDPW_CCP (which impairs the quality of the data), then in order to ensure the safety of transaction clearing KDPW_CCP may determine reference rates based on data sourced from other available new services referred to above, in whole or in part. The principle defined in the preceding sentence shall apply accordingly to data available from the next selected news service.